3.- El método de derivación logarítmica

Este método se puede utilizar para derivar productos, cocientes y potencias. Consiste en aplicar logaritmos neperianos a los dos miembros de la ecuación y derivar implícitamente a continuación.

Un ejemplo aclarará lo que queremos decir. Derivemos por este método la función $y=\frac{x-1}{x+1}$:

$$y \stackrel{2}{=} \frac{x-1}{x+1} \stackrel{3}{\Rightarrow} \ln y = \ln(x-1) - \ln(x+1) \stackrel{4}{\Rightarrow}$$

$$\Rightarrow \frac{y'}{y} = \frac{1}{x-1} - \frac{1}{x+1} = \frac{x+1-x+1}{(x-1)(x+1)} = \frac{2}{(x-1)(x+1)} \stackrel{5}{\Rightarrow}$$

$$\Rightarrow y' = \frac{2}{(x-1)(x+1)} \cdot \frac{x-1}{x+1} = \frac{2}{(x+1)^2}$$

Como se indica en la nota 3, este paso es una simplificación que se acepta en la práctica por comodidad y cuya justificación⁶ es la siguiente:

$$y = \frac{x-1}{x+1} \stackrel{7}{\Rightarrow} |y| = \left| \frac{x-1}{x+1} \right| = \frac{|x-1|}{|x+1|} \stackrel{8}{\Rightarrow}$$

$$\Rightarrow \ln|y| = \ln|x-1| - \ln|x+1| \stackrel{9}{\Rightarrow} \frac{y'}{y} = \frac{1}{x-1} - \frac{1}{x+1} = \dots$$

* * *

Por ejemplo, derivemos la función $y=x\cdot\sqrt{\frac{x^2-1}{x^2}}$:

$$y=x\cdot\sqrt{\frac{x^2-1}{x^2}} \Rightarrow \ln y=\ln x+\frac{1}{2}\cdot \ln (x-1)+\frac{1}{2}\cdot \ln (x+1)-\ln x \Rightarrow$$

- 3 - D-7

 $^{^{1}}$ Con lo que se consigue transformar los productos en sumas, los cocientes en restas y las potencias en productos.

Observa que el dominio de esta función es R-{-1}.

 $^{^3}$ Al aplicar logaritmos neperianos a los dos miembros de la ecuación (utilizando sus propiedades en el segundo para convertir el cociente en una resta), la función pasa a estar definida implícitamente, pero sólo en el intervalo (1,+ $\!\infty$). No obstante, como se muestra a continuación en el texto, la fórmula de la derivada así obtenida es válida en R-{±1}. Queda para más adelante la justificación de que también es cierta para x=1 (ver D-13).

⁴ Aplicamos ahora el método de derivación implícita, operando y simplificando el resultado del segundo miembro después de derivar.

Despejamos y' y simplificamos.

⁶ Parecida es la justificación en todos los casos en los que los argumentos de los logaritmos que aparecen en el cálculo pueden ser también negativos.

⁷ Tomamos valores absolutos en los dos miembros de la ecuación, con lo que la función pasa a estar definida implícitamente en todo su dominio.

 $^{^8}$ Al aplicar logaritmos neperianos a los dos miembros de la ecuación (utilizando sus propiedades en el segundo para convertir el cociente en una resta), la función aparece definida implícitamente de otro modo, pero ahora sólo en $R-\{\pm 1\}$.

 $^{^9}$ Al derivar implícitamente la ecuación, obtenemos el mismo resultado que antes, pero ahora en el conjunto R- $\{\pm 1\}$ y no sólo en el intervalo $(1,+\infty)$. Observa que en este paso, así como en el señalado en la nota 4, se requiere aplicar la regla de la cadena, cuyas condiciones se cumplen en ambos casos.

$$\Rightarrow \frac{y'}{y} = \frac{1}{2} \cdot \frac{1}{x-1} + \frac{1}{2} \cdot \frac{1}{x+1} = \frac{x+1+x-1}{2(x-1)(x+1)} = \frac{x}{x^2-1} \Rightarrow$$

$$\Rightarrow y' = \frac{x}{x^2 - 1} \cdot x \cdot \sqrt{\frac{x^2 - 1}{x^2}} \stackrel{1}{=} \sqrt{\frac{x^4 \cdot (x^2 - 1)}{x^2 \cdot (x^2 - 1)^2}} = \sqrt{\frac{x^2}{x^2 - 1}}$$

4.- Problemas

1) Dada la siguiente función: a) encuentra los valores de a y b para que sea derivable en x=1; b) calcula los puntos de su gráfica en los que la tangente es paralela al eje OX, y c) halla f'(x):

$$f(x) = \begin{cases} \ln x - 1 & \text{si } x > 1 \\ 2x^2 + ax + b & \text{si } x \le 1 \end{cases}$$

2) Deriva las siguientes funciones:

a)
$$y = \frac{\ln x}{x}$$

a)
$$y = \frac{\ln x}{x}$$
 b) $y = \frac{x^2}{\ln x}$

c)
$$y = \sqrt{1 + x^2} \cdot (\ln x + 1)$$

d)
$$y=ln(x \cdot e^x)$$

f)
$$y = \frac{1}{x} + 2 \ln x - \frac{\ln x}{x}$$

a)
$$y = \frac{\ln x}{x}$$

b) $y = \frac{x^2}{\ln x}$
c) $y = \sqrt{1 + x^2} \cdot (\ln x + 1)$
d) $y = \ln(x \cdot e^x)$
e) $y = \ln x^a - \ln a \cdot \log_a x$
f) $y = \frac{1}{x} + 2\ln x - \frac{\ln x}{x}$
g) $y = 6\ln^2 x - 5\ln x + \frac{1}{\ln x}$
h) $y = \frac{x^3 + 2x}{\ln^2 x + 5}$
i) $y = \ln^2 x^2$

h)
$$y = \frac{x^3 + 2x}{1n^2x + 5}$$

$$i)$$
 $y=ln^2x^2$

3) Deriva las siguientes funciones:

Deriva las siguientes funciones:
a)
$$y = \frac{1}{3} \cdot \ln \frac{x^2 - 2x + 1}{x^2 + x + 1}$$
 b) $y = \ln (x \cdot \sqrt{x^2 + 1})$ c) $y = \ln (x^2 + 5x + 3)$
d) $y = \ln \frac{3x + 2}{x^2}$ e) $y = [\ln (x^2 + 1)]^{4/5}$ f) $y = \ln (x^2 + 5)^3$
g) $y = \log_5(x^3 + 2x - 1)$ h) $y = \ln \frac{x^5}{x^3 + \ln x}$ i) $y = \sqrt{\ln (3x^2 + 6x - 1)}$

b) y=ln
$$(x \cdot \sqrt{x^2+1})$$

$$y=\ln(x^2+5x+3)$$

d)
$$y=\ln \frac{3x+2}{x^2}$$

e)
$$y=[\ln(x^2+1)]^{4/5}$$

f)
$$y=ln(x^2+5)^3$$

g)
$$y=log_5(x^3+2x-1)$$

$$\mathbf{h)} \quad \mathbf{y} = \ln \frac{\mathbf{x}^5}{\mathbf{x}^3 + \ln \mathbf{x}}$$

i)
$$y = \sqrt{\ln(3x^2 + 6x - 1)}$$

$$\mathbf{j}$$
) y=ln[x³+(x²-1)⁴]

$$k) y = \sqrt{\ln x + 1} + \ln(\sqrt{x} + 1)$$

$$1) y=\ln \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$$

j)
$$y=\ln[x^3+(x^2-1)^4]$$
 k) $y=\sqrt{\ln x+1}+\ln(\sqrt{x}+1)$ l) $y=\ln\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$ m) $y=\ln\frac{\sqrt{x^2+1}-x}{\sqrt{x^2+1}+x}$ n) $y=\ln\sqrt[n]{1+x^2}$ ñ) $y=\ln\ln(3-2x^3)$ o) $y=\ln\sqrt{\frac{1-x}{1+x}}$ p) $y=\log_3(1+2x)$ q) $y=\ln\frac{x(1-x)}{(3-x)^2}$ r) $y=\ln\frac{\ln x}{x}$ s) $y=\ln(x+\ln x)$ t) $y=\log_{x-2}(x^2-4)$

n)
$$y=\ln \sqrt[n]{1+x^2}$$

$$\tilde{n}$$
) y=ln ln(3-2x³)

$$y=\ln\sqrt{\frac{1-x}{1+x}}$$

$$\mathbf{p}$$
) $y = \log_3(1 + 2x)$

q)
$$y=\ln \frac{x(1-x)}{(3-x)^2}$$

$$y=\ln\frac{\ln x}{x}$$

$$\mathbf{s}$$
) $y=\ln(x+\ln x)$

$$y = \log_{x-2}(x^2-4)$$

4) Halla la tangente y la normal en x=1 a la gráfica de la función $y=ln(x^2-5x+5)$.

5) Calcula la tangente a la curva lny+x/y=e en el punto P(e,1).

6) Halla la parábola y=ax2+bx+c que pasa por (1,0) y tiene en dicho punto un contacto de orden máximo con la función y=lnx.

7) Halla el dominio de derivabilidad de la función $y=(1+\sqrt{x})\cdot \ln(1+x)$.

¹ Como el dominio de la función que estamos derivando es $(-\infty,-1] \cup [1,+\infty)$, (x-1)(x+1)>0.