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Friction force regimes and the conditions for endless penetration
of an intruder into a granular medium
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An intruder penetrating into a granular column experiences a depth-dependent friction force F (z). Different
regimes of F (z) have been measured depending on the experimental design: a nearly linear dependence for
shallow penetrations, total saturation at large depths, and an exponential increase when the intruder approaches
the bottom of the granular bed. We report here an experiment that allows us to measure the different regimes
in a single run during the quasistatic descent of a sphere in a light granular medium. From the analysis of the
resistance in the saturation zone, it was found that F (z) follows a cube-power-law dependence on the intruder
diameter and an exponential increase with the packing fraction of the bed. Moreover, we determine the critical
mass mc required to observe infinite penetration and its dependence on the above parameters. Finally, we use
our results to estimate the final penetration depth reached by intruders of masses m < mc. The results indicate
that an intruder of any density (larger than the density of the granular bed) can sink indefinitely into the granular
medium if the bed packing fraction is smaller than a critical value.
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I. INTRODUCTION

Since the 19th century, the penetration dynamics of pro-
jectiles in sand and clay was already an important topic
in ballistics [1]. Initial experiments were focused on the
resistance force to horizontal penetration at low velocities
(v < 100 m/s) [2–5]. Poncelet [3] posed a total resistance
given by the sum of two terms: a constant friction term plus
a viscous term, similar to that in fluids, proportional to the
velocity square. At the beginning of the present century, the
understanding of impact cratering motivated laboratory-scale
studies about the impact and vertical penetration of projectiles
in a model granular bed [6–11]. In this context, the dynamics
of a projectile of mass m falling through a granular medium
under the influence of gravity g is well approached by the
expression

mz̈ = mg − F (z) − ηż2, (1)

where F (z) is a friction term, often taken to be linear with
depth z [10,11], and η is a constant. More recent studies
propose the addition of a term linear in velocity to the
viscous drag [12,13], or a linear differential equation based
on energy-depth analysis [14]. It was also reported that the
frictional term scales as the square root of the density of
the granular medium and projectile, which is typically larger
than the combination of hydrostatic pressure and Coulomb
friction law [15]. Nevertheless, in Ref. [16], it was shown
that F (z) is determined by the normal force proportional to
the intruder surface. This force is set by a friction coefficient,
hydrostatic pressure, and the projectile size and shape. The
linear dependence on depth is only recovered for spherical
projectiles when z is larger than the ball diameter [16,17].

On the other hand, the friction term F (z) becomes constant
if a projectile penetrates very deep into a granular column
until reaching the zone where the pressure saturates due to the
Janssen effect [8,18,19]. This happens if the projectile density
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is much larger than the density of the confined grains [19], or,
as we show in the present work, for low packing fractions of
the bed. Under these considerations, the projectile motion is
well described by

mz̈ = mg − κλ(1 − e−z/λ) − ηż2, (2)

where κ is a constant, and λ is a saturation length [19]. Finally,
when the projectile is getting to the bottom of the column,
the resistance force increases exponentially as F (z) ∝ e−z/δ ,
where δ is a characteristic length scale for sensing the bottom
of the container [8].

In this Rapid Communication, the different regimes of the
static friction term are detected by directly measuring F (z)
using a force sensor while the intruder penetrates a column of
expanded polystyrene beads. In contrast to Refs. [18–20], the
experiments were performed at a negligible velocity in order to
discard the inertial viscous term. Our work is focused mainly
on two aspects: (a) to measure the transition between different
regimes and describe the dynamics with a single equation for
F (z), and (b) to explore the effect of intruder size and packing
fraction (the latter rarely analyzed; see, e.g., Ref. [13]) in the
final penetration depth.

II. EXPERIMENTAL SETUP

The experimental setup is sketched in Fig. 1(a). The silo
consists of a cardboard tube of inner diameter Dsilo = 35.3 ±
0.05 and 300 cm long filled with 3360 ± 1 g of expanded
polystyrene beads (average density ρg = 0.022 g/cm3 and
radius r = 2 ± 0.5 mm). The effective density of the granular
bed obtained when the material was poured from the top
is ρeff = 0.0128 g/cm3 [see Fig. 1(b)], which allows us to
calculate the bed packing fraction φpoured = ρeff/ρg = 0.582 ±
0.001. The intruders consisted of hollow polyurethane balls of
diameters db ranging from 3.0 to 9.4 ± 0.1 cm filled with
different amounts of lead to obtain masses m between 50 and
1076 ± 1 g. Solid lead balls were also used, and in all cases,
the intruders were covered with a thin layer of latex to obtain
the same surface roughness. A ball of a selected mass is hung
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FIG. 1. (a) Sketch of the experimental setup: A long silo filled
with light grains is slowly penetrated by an intruder. The drag force
is monitored using a digital force gauge. (b) Mass of grains poured
into the silo vs column height H or vs equivalent occupied volume
Vcol; the black line slope gives the effective density of the bed (ρeff =
0.0128 g/cm3). (c) The mass of the granular column m, measured
at the bottom of the silo, as a function of H , follows a Janssen-like
dependence (red line). Mass saturation (dashed blue line) allows us
to estimate the saturation length λs ∼ 38 cm for the static bed.

with a 3 m fine thread from a force gauge Omega DFG35-5
suspended beneath a pulley connected to a dc geared motor
fixed at a height of 6 m from the bottom of the silo. This array
allows the intruder to descend through the granular medium at
a constant velocity and measure its apparent weight without
interference on the force gauge, which never enters into the
bed.

Before each penetration, the material is prepared to a
reproducible loose random packing by slowly turning off a
fluidizing upflow of air injected with an air pump connected
at the bottom of the container, which leaves a column of
277 ± 0.5 cm high with a packing fraction φ = 0.566 ± 0.001
when the air flow has been totally suppressed. Subsequently,
φ is increased in the range 0.566 < φ < 0.613 by tapping
uniformly the silo wall. The change in packing is measured by
a noticeable shift of the granular surface level (0–21 cm). Once

FIG. 2. F vs z during the penetration of spherical intruders of
different masses and constant diameter, db = 5.4 cm, into a light
granular column with packing fraction φ = 0.566.

the granular column is ready, the ball is located at the surface of
the bed, the force gauge is started, and the motor is turned on to
start the descent at a constant velocity vc = 1.1 ± 0.05 cm/s
while the data are captured at 10 Hz with an accuracy of
±0.01 N. Initially, the force gauge indicates the intruder weight
W = mg because the ball hangs freely. Then, the gauge is
set to zero to obtain directly the depth-dependent resistance
Fd . As the ball penetrates into the bed, the reading increases
until it reaches Fd = W , when the intruder stops sinking at a
final depth Zf , or a constant value Fd < W , when the intruder
reaches the saturation zone. The force gauge measures Fd

versus time t , and it is converted to Fd versus depth z by
simply using z = vct . After one run, the bed is prepared again
and the procedure is repeated five times for several masses,
diameters, and packings in the ranges indicated above.

III. RESULTS AND DISCUSSION

A. Different regimes of F(z)

Figure 2 shows the resistance F as a function of z for
intruders of different masses penetrating into the loosely
packed medium (φ = 0.566). For m = 100 g, F (z) increases
nearly linearly until the ball stops at z ≈ 30 cm when F (z) =
W ≈ 0.98 N. For m = 200 g, F (z) increases and starts to
saturate with z, but the intruder still stops at a finite depth
(∼100 cm) when F (z) ≈ 1.96 N.

A complete saturation of the resistance force is observed
for m = 357 and 445 g. Note that the plateau is reached about
F (z) ≈ 2 N. This saturation force Fsat is smaller than the re-
quired force to stop the intruders (3.5 and 4.36 N, respectively).
Deeper, an exponential growth of F (z) is observed when the
balls approach the bottom of the silo, and they stop when
F (z) = W in each case. In principle, these spheres would
sink indefinitely in an infinite silo. It is important to mention
that the noise present in the measurements is because force
chains extend from the intruder deep into the medium and are
intermittently loaded and broken during the intruder passage
[21]. These force chain fluctuations are of the order of 0.3 N.
On the other hand, the oscillations of F (z) eventually observed
in the saturation zone are related to an inhomogeneous packing
fraction produced during the bed preparation process.
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FIG. 3. F vs z during the penetration of a spherical intruder of
constant mass and different diameters. The packing fraction of the
bed is also constant, φ = 0.566. In four cases, Fsat < W , and the
intruder reaches the saturation zone.

In order to obtain a single expression for the resistance
force as a function of depth, let us consider the saturating term
of Eq. (2) describing the friction force in an infinite silo [19],
combined with the exponential term for intruders reaching the
bottom of a container [8]. The latter term must be negligible
for z � H where only the saturation term is important, but it
must become dominant when z approaches H . Thus, F (z) can
be written as

F (z) = κλ(1 − e−(z−z0)/λ) + Ae−(H−z)/λ∗
, (3)

where λ is the saturation length, H = 277 cm is the height
of the granular column, and λ∗ is a length related to the
confinement effects at the bottom of the silo. The parameter
z0 was introduced by taking into account a nonlinear increase
of F (z) at the beginning of the penetration [16,17], which
can be neglected for loose packings but becomes important
at high packings, as it is shown in Sec. III C. The product
κλ = 2.0 ± 0.1 N is given by the average of the resistance
in the plateau. With the above values, Eq. (3) was used
to fit the data for m = 445 g in Fig. 2 (orange line),
which gives λ = 41.5 ± 0.1 cm ∼ O(λs), κ = 0.0482 N/cm,
λ∗ ≈ 5.4 cm ∼ O(db), and z0 ∼ 3 cm. Note that z0 � λ is
negligible for φ = 0.566.

B. Penetration of intruders with different sizes

Figure 3 shows F vs z for an intruder of constant mass
m = 600 g penetrating into a bed of constant packing φ =
0.566 for different values of db: For db � 7.8 cm, the intruder
reaches the saturation zone, for db = 9.4 cm, the intruder stops
at z ≈ 40 cm, displaying only the linear regime, but in all cases
the penetration finishes at F = 5.88 N when the ball weight is
equilibrated.

Figure 4(a) shows that the average force in the saturation
zone Fsat increases with db (black squares). The log10 - log10
plot in the inset reveals a power-law dependence given
by Fsat = (0.015 ± 0.002)d2.83±0.08

b ≈ Ad3
b . Since Fsat = κλ,

from Eq. (3) one can write the resistance force without
considering the bottom effects as

F (z) ≈ Ad3
b (1 − e−(z−z0)/λ). (4)

FIG. 4. (a) Fsat vs db: The experimental data (black symbols) are
well described by a cube-power law (red line) as it is confirmed by
the log-log plot in the inset. (b) λ vs db: The gray line indicates the
value λ = 41.5 cm ∼ λs . (c) mc vs db obtained by the two methods
described in the text. (d) Zf vs m for four values of db. Data are well
described by using Eq. (5).

In Ref. [16], it was found that the local friction force during
projectile penetration increases with depth according to the
expression dF = αμ(ρgz)dA, where μ is an internal friction
coefficient, ρgz is the gravitational loading pressure, dA is
an infinitesimal area element pointing normal to the projectile
surface, and α a constant of proportionality. For the spherical
case, the above expression predicts F (z) ∝ d2

b . Note, however,
in Fig. 4(a), that the square-power dependence (dotted blue
line) is far from our experimental results, which are better
approached by the cube-power dependence described above
(red line).

It is important to clarify that the results in Ref. [16]
were obtained for shallow depths of the order of one sphere
diameter (∼3 cm). Here, we consider deep penetrations where
F becomes independent of z, and the effect of db was measured
directly in a long depth range and far from the bed surface.
Moreover, the magnitude of λ can be evaluated by adjusting
the curves in Fig. 3 with Eq. (3). The resulting data shown in
Fig. 4(b) indicate that λ ∼ O(41.5 cm), largely independent
of db.

Additionally, we estimated the critical mass mc required to
reach the saturation zone depending on the intruder diameter
considering the fact that in this zone, Fsat = mcg. The values of
mc vs db are shown in Fig. 4(c) (black dots). Another method
to find mc is by varying the mass of an intruder that stops at
a final depth Zf until reaching the mass at which the intruder
does not stop. This procedure was followed using spheres
of several diameters and the results are shown in Fig. 4(d)
(symbols). Since Zf is reached when the intruder weight is
balanced by F (z), far from the bottom one can write mg =
kλ(1 − e−(Zf−z0)/λ), and solving for Zf ,

Zf = −λ ln(1 − m/mc) + z0, (5)
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FIG. 5. F (z) vs z experienced by an intruder of constant mass
m = 600 g (W = 5.88 N) and diameter db = 4.8 cm for different
packing fractions. The dashed line corresponds to F (z) = W and the
intruder stops when this value is reached.

where mc = κλ/g and z0 is negligible for loose packing.
Equation (5) was used to fit the experimental measurements
using λ = 41.5 cm and leaving mc as the free parameter. The
best fits represented in Fig. 4(d) by solid lines allowed us to
obtain the values of mc vs db. The resulting values plotted
in Fig. 4(c) as red diamonds are in all cases a bit larger than
the values given by the saturation force. Our explanation is
that, in the first method, we used the average of the resistance
force in the saturation zone Fsat; however, as it can be noticed
from the plots in Fig. 3, there exist fluctuations larger than the
mean value able to stop the intruder of mc = Fsat/g. Therefore,
it is necessary to have a mass value slightly higher than the
predicted one to surpass the stronger force chains and penetrate
indefinitely the granular column.

C. Effect of packing fraction

Another important parameter that determines the resistance
force is the packing fraction of the bed. Figure 5 shows F

vs z for an intruder of constant mass (m = 600 g, weight
W = 5.88 N) penetrating into beds with different values of φ.
For packings φ � 0.589, the intruder reaches the saturation
zone and penetrates deep into the bed until stopping close to
the bottom when the force grows exponentially. At higher
packings, only the nearly linear regime is observed, the
resistance force grows faster, and the intruder stops when its
weight is equilibrated by F (z) = 5.88 N.

As in the previous case, the average of the saturation force
in the plateau was obtained and it was plotted as a function of
φ in Fig. 6(a). The resulting data show an exponential growth
and are well fitted by the equation

Fsat = βd3
b

(
e
γ ( φ−φ0

φmax−φ
) − 1

)
, (6)

where β = 0.042 ± 0.002 N, γ = 0.57 ± 0.06, φmax =
0.620 ± 0.005, and φ0 = 0.548. Here, d3

b is introduced based
on the previous analysis and in this case db = 4.8 cm. The
parameter φ0 is the packing value at which F (z) acting on the
intruder is zero. The value of φ0 was estimated by performing
the experiment with the air flow “on” at different flow rates
to expand the granular bed. When the grains start to be
suspended by the interstitial air flow, the contact among them

FIG. 6. (a) Main plot: Fsat vs φ; inset: mc = Fsat/g vs φ (points).
Black lines correspond to the best fit of the data given by Eq. (6). (b)
Zf vs φ for intruders of 5.4 cm diameter and different masses. Solid
lines correspond to Eq. (8).

is lost and the friction F (z) approaches zero. This happened
when φ ≈ 0.545–0.548. The best fit of the experimental data,
represented in Fig. 6(a) by the black line, is in good agreement
with the experimental estimation. It is important to clarify that
the air flow was maintained “on” during the experiment only
for the case φ = φ0. For the rest of the experiments, the air
flow was only used to prepare the bed and turned off before
the intruder penetration.

Since Fsat = κλ, and given its dependence on db and φ

found above, from Eq. (3), we can write down an expression
for F (z) as follows,

F (z) ≈ βd3
b

(
e
γ ( φ−φ0

φmax−φ
) − 1

)
(1 − e−(z−z0)/λ). (7)

This equation is plotted in Fig. 5 (overlapping lines) for
different values of φ using λ = 41.5 cm and the constant values
obtained from Eq. (6). The agreement with the experimental
results is remarkable.

One can also estimate the minimum intruder mass required
to observe infinite penetration depending on the packing
fraction considering that Fsat = mcg. The resulting values of
mc vs φ are shown in the inset of Fig. 6(a). The right axis
indicates the corresponding intruder density. If the bed is
prepared at a given packing, an intruder with density above
the black line would sink endlessly through the granular bed.

Finally, we measured the final depth Zf reached by an
intruder of a given mass depending on the packing fraction
of the bed. The experimental data are shown in Fig. 6(b)
(symbols). Using mc = Fsat/g and combining Eqs. (5) and
(6), one obtains

Zf = −λ ln

(
1 − mg

βd3
b

(
e
γ ( φ−φo

φmax−φ
) − 1

)
)

+ z0. (8)

This expression is plotted in Fig. 6(b) as a function of φ for
different values of m (colored lines) with β as the unique
free parameter and z0 determined from the penetration at the
maximum packing. The solutions of the equation describe
reasonably well the experimental results in the explored range.
The exact dependence of the free parameters on the medium
properties and intruder geometry was not analyzed in this
research, and caution should be used in using their values
due to the high sensitivity of the system to the volume
fraction. Nevertheless, the existence of the saturation force
(i.e., a critical mass) and its dependence on the packing and
intruder volume are robust results measured directly during
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the penetration, and are important contributions of the present
study.

IV. CONCLUSIONS

The depth-dependent resistance to the penetration of a
spherical intruder into an ultralight granular column was ana-
lyzed by varying the intruder diameter, its mass, and packing
fraction of the medium in an environment that allows one to
neglect the inertial drag contribution. The results confirm that,
under specific conditions, an intruder can penetrate indefinitely
through a granular column due to the Janssen-like saturation
of the friction force. The most remarkable result is that this
force is proportional to the sphere volume, which is in contrast
with the square-law dependence of F (z) reported previously
for shallow penetrations [16]. Moreover, the resistance force
and hence the critical mass to observe infinite penetration

grow exponentially with the packing fraction of the bed.
Our findings show that the parametric window to observe
such a rare event is very reduced, and that is the reason
why the reported dynamics is not commonly found in nature.
Nonetheless, infinite penetration could probably be observed
with dense projectiles falling into dry quicksand or through
granular media totally immersed in a liquid, where the effective
density of the granular bed is reduced by buoyant forces.
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